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Abstract. We discuss the dynamics of two weakly coupled Bose-Einstein condensates in a double-well
potential, contrasting the mean-field picture to the exact N-particle evolution. On the mean-field level, a
self-trapping transition occurs when the scaled interaction strength exceeds a critical value; this transition
essentially persists in small condensates comprising about 1000 atoms. When the double-well is modulated
periodically in time, Floquet-type solutions to the nonlinear Schrédinger equation take over the role of
the stationary mean-field states. These nonlinear Floquet states can be classified as “unbalanced” or
“balanced”, depending on whether or not they entail long-time confinement of most particles to one
well. Since the emergence of unbalanced Floquet states depends on the amplitude and frequency of the
modulating force, we predict that the onset of self-trapping can efficiently be controlled by varying these
parameters. This prediction is verified numerically by both mean-field and N-particle calculations.

PACS. 03.75.Fi Phase coherent atomic ensembles; quantum condensation phenomena — 05.30.Jp Boson

systems — 32.80.Pj Optical cooling of atoms; trapping

1 Introduction

When dealing with quantum mechanical many-particle
systems, the mean-field approximation is an indispensable
tool. Yet, this approximation introduces a nonlinearity,
and in general it is not obvious whether phenomena typ-
ically associated with nonlinear equations, such as bifur-
cations in the spectrum of the stationary states, actually
find their counterpart in the true many-body dynamics,
or whether they are merely an artifact of the approxima-
tion. Simple models which can be solved exactly both on
the mean-field level and on the level of the many-body
Schrodinger equation, and thus lend themselves to a test
of the mean-field picture, are therefore of particular im-
portance.

In this paper we present an extensive study of such a
model, describing two weakly coupled Bose-Einstein con-
densates at zero temperature under the influence of exter-
nal time-periodic forcing. It had been pointed out already
before the experimental realization of dilute Bose-Einstein
condensates with alkali atoms [1] that a weak tunnelling
contact between two such condensates should give rise to
a Josephson-like oscillatory exchange of atoms [2,3]; af-
ter the feasibility of creating such weak tunnelling links
had been demonstrated in the laboratory [4], this neutral-
particle analogue of the Josephson effect has become the
subject of several theoretical studies [5-9]. We take up
the two-mode model for coupled condensates put forward
by Milburn et al. [5], and extend it by adding a periodic
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force. After stating the algebraic properties of this model
in Section 2, and estimating the magnitude of the crucial
dimensionless parameter a that embodies the strength of
the interaction among the condensed particles, Section 3
provides a detailed comparison of mean-field and many-
body dynamics in the absence of the driving force. On the
mean-field level, the model then shows a “self-trapping
transition” [5,6,8] which had originally been encountered
in the context of the motion of a polaron on a dimer
by Kenkre and Campbell [10]; we investigate why, how,
and to which extent this mean-field transition reflects an
actual feature of the underlying many-body model. This
discussion sets the stage for Section 4, where we show
that the self-trapping transition can be controlled by the
periodic force: If such a force is acting on the system,
the self-trapping transition still occurs, but for a value
of the scaled interaction strength a which now depends
on strength and frequency of the drive. This novel effect
might find applications for measuring the s-wave scat-
tering length of condensed atoms, or for determining the
number of atoms in comparatively small condensates. The
new theoretical concept which leads to this discovery, and
which allows us to discuss the dynamics of periodically
forced, coupled condensates in close analogy to the un-
driven case, is the notion of Floquet states for the nonlin-
ear Schrodinger equation [11]. These states constitute a
generalization of the Floquet states known from quantum
systems governed by a time-periodic Hamiltonian [12,13]
to nonlinear mean-field equations of the Gross-Pitaevskii
type. Essentially, the “nonlinear” Floquet states take over
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the role played in the absence of the force by stationary
mean-field solutions; since they incorporate this force in a
non-perturbative manner, they provide an efficient access
to the intricate time evolution of the driven many-body
system. In particular, the dependence of the Floquet states
on strength and frequency of the periodic drive holds the
key for understanding the systematics of coherent control
of the self-trapping transition. Besides the “active” view of
steering that transition through parameter space by suit-
ably adjusting the force, our results also lend strong sup-
port to a “passive” interpretation: The periodic force effec-
tively renormalizes the strength of the interaction among
the Bose-Einstein-condensed particles. This viewpoint will
be substantiated in the concluding Section 5.

2 The model

Consider a Bose-Einstein condensate consisting of N
atoms at zero temperature and confined by a symmet-
ric double-well potential V (r), realized experimentally by
a combination of magnetic and optical forces [4]. As-
sume further that this potential is modulated periodically
in time with angular frequency w, such that the Gross-
Pitaevskii mean-field equation for the macroscopic wave
function ¥(r,t) adopts the form

.0
1h&u7(r,t) =

h2
<%A +V(r)+F - rsin(wt) + Ng|¥(r, t)|2> U(r,t),
1)
where

dras.h?

9= (2)
quantifies the interaction strength, with as. and m de-
noting the s-wave scattering length and the mass of the
condensed atomic species, respectively, and ¥(r,t) is nor-
malized to unity, [d3r [¥(r,t)|? = 1. We stipulate that the
modulating force F be directed along the line connecting
the two minima of the potential, so that the bottoms of
the two wells move in phase opposition: The left one goes
down when the right one goes up, and vice versa. Let now
u1(r) and wuz(r) be the lowest Wannier-like single-particle
orbitals localized in the individual wells. Their even and
odd linear combinations

[ur(r) + ua(r)]

IS
+
=
~—
I
-~

u-(r) = 5 [ (r) — ua(r)] (3)

are approximate eigenfunctions of the single-particle
2
Hamiltonian Hy = —2- A 4 V (r):

2m

Hyu(r) = Exug(r), (4)
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with £L < FE_. If the dynamics of the driven Bose-
Einstein condensate remains essentially restricted to this
doublet of states, one can resort to the ansatz [5]

U(r,t) = exp(—iEot/h) [c1 (t)ui(r) + ca(t)ua(r)], (5)

where Ey = 3(E; + E_). The squares |ci(t)]> and
le2()]? = 1—|e1 ()|, multiplied by the total particle num-
ber N, then give the expectation values for the numbers
of particles found in the first and second well. The equa-
tions of motion for the amplitudes ¢; (t) and c2(t) follow in
the usual way by inserting the ansatz (5) into the Gross-
Pitaevskii equation (1) and taking the scalar product with
u1(r) and uz(r), respectively. We introduce the tunnelling
splitting

WM?=E_—E, (6)

and the on-site interaction energy per particle

hk = %/d3r luy (r)]4, (7)

and employ the position matrix elements
/d?’ruf(r) rui(r) =d
/ Pru(r)rus(r) = —d, (®)

where the origin of the coordinate system is located in the
center of the barrier, to define the Rabi frequency

p="2. )

Since F is assumed to be parallel to d, only the absolute
magnitudes of these vectors enter here; 2d is the distance
between the minima of the two wells. Moreover, we ne-
glect the overlap of the localized orbitals, uq (r)us(r) ~ 0.
This approximation implies that the condensates situated
in the individual wells are merely weakly coupled; a more
general treatment not subject to this restriction, but with-
out the periodic drive, has been given by Spekkens and
Sipe [14]. One thus arrives at the system

iEcl(t) = ,g ca(t) 4+ 2Nk |ex () e1(t) + psin(wt) e (¢)
1%@(0 = ,g c1(t) 4+ 2Nk |ea ()2 ea(t) — psin(wt) ea(t).

(10)
Using the dimensionless time variable
T = (2, (11)

these equations become

1 N
icp = —5 e + 2% ler?er + %Sin(%r) c1
1 N
icy =—3 clJrQWK |02|2 cy — %Sin(%T) ca, (12)
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where here and henceforth the dot denotes differentiation
with respect to 7, and the dependence of the on-site am-
plitudes ¢y, co on 7 is suppressed.

The system (12) contains three dimensionless pa-
rameters: The ratio Nx/f2 of the N-particle interaction
energy to the single-particle tunnelling splitting (6), the
ratio p/ {2 of the Rabi frequency (9) to the tunnelling fre-
quency {2, and the ratio w/{2 of the driving frequency w to
the tunnelling frequency. For estimating the relevant or-
ders of magnitude, it suffices to consider a one-dimensional
double-well potential V(z) with minima at x = =+d, so
that the tunnelling splitting is given by [15,16]

2h?

(13)
Assuming the two wells to be about harmonic, one may
approximate u1(x) and uz(z) by harmonic oscillator func-

tions,
1 ol (z £ d)?
@r2)/a P\ "y )

where the oscillator length £ is related to the frequency wy
of oscillations within one well by ¢ = /hi/(2mwp). Then
equation (13) yields

2d d?
hf2 = hwo\/;z exp(ﬁ) y

indicating that the tunnelling frequency differs from the
oscillation frequency by a factor which is determined solely
by the ratio d/f. For instance, if d/¢ = 2, meaning that
the distance between the two minima is four times the
oscillator length, one obtains Af2 =~ 0.22 Aiwy. Taking com-
paratively shallow wells with wy = 100 s~!, say, which
corresponds to ¢ ~ 3.7 pum for ?3Na atoms, one thus ends
up with 2 ~ 22 s71.

Next, assuming the bottoms of the two wells to be
roughly isotropic, the three-dimensional analogues of the
functions (14) lead to

ur2(x) = (14)

(15)

. 1
3 4_
[Erimwl = (16)
implying
R ase

hk = . 17

ST N (")
Inserting as. = 2.75 nm for 2*Na atoms [17], together

with the same ¢ as above, one finds k ~ 0.021 s~!, or
Kk/£2 =~ 0.97 x 1073. Hence, under quite realistic conditions
the interaction parameter Nk /{2 is on the order of unity
for N a2 1000 particles.

The two-mode approximation (5) can be expected to
hold as long as the many-body interaction energy remains
small compared to the ground-state energies of the two
wells [5]. This gives the condition Nk < hwg, or

N K 2\/%6/0130 (18)
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on the particle number IV; with the above parameters, this
amounts to NV < 4800. Thus, the two-mode approxima-
tion in the form (5) is valid only for quite small conden-
sates. In addition, the Rabi frequency should remain small
compared to the oscillator frequency, u < wp. Since, ac-
cording to the estimate (15), the tunnelling frequency {2
will typically figure as a few tenths of wq, the parameter
1/ can be as high as 10 for admissible forces, while the
driving frequency w should be on the order of {2 at most.
It should also be noted that the assumption of isotropic
traps underlying these order-of-magnitude estimates has
to be abandoned for traps with large aspect ratios, but
the estimates can easily be adapted to such cases.

Besides the basic system (12), there are two other rep-
resentations of the equations of motion that will be found
useful. Defining the quantities [5]

1 >k *
= 5 (cje2 +cicy)

2
i >k >k
Ky = ) (ciea — c1c3)
1
K, = 3 (Jex* = |e2]?), (19)

the significance of which will become obvious soon, one
gets

. Nk no.(w

KI =—4 ?Ksz -2 5 SIH(ET)Ky

: N

K, =+4 ?HKZKQC 42 % sin(%r) K, + K,

K, =-K,. (20)

On the other hand, decomposing the amplitudes into ab-
solute magnitudes and phase factors according to ¢; =
lc1] exp(ivy), c2 = |co| exp(ids) [6,8], and invoking the
population imbalance

p=leaf’ —eaf (21)
and the relative phase
=1 — V1, (22)
a short calculation results in
p=—V1—p*sin(y)
o= 2%19 = cos(ip) + 2% sin(%T) . (23)

These latter equations have an appealing Hamiltonian
form: Introducing

N
Hpp = ?ﬁp2 — /1 —=p?cos(p) + Q%psin(%T) , (24)

one has
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In this representation, the population imbalance p corre-
sponds to the momentum of a periodically forced nonrigid
pendulum, that is, a pendulum with a length depending
on p [6], with ¢ denoting its angle of displacement, and
Nk/(2 playing the role of its inverse mass.

The equivalent equations of motion (12, 20, 23) all
stem from the mean-field Hamiltonian

h2
Hyr = —5 (c1¢5 + cfea) + Nhk (|cl|4 + |02|4)

+ hpasin(et) (Jeaf? — leal?) (26)
which is what remains within the two-mode approxima-
tion (5) from the original Gross-Pitaevskii Hamiltonian
underlying equation (1). It is now of major interest that if
one adheres to the two-mode approximation, the mean-
field approximation can be abandoned: If there are NV
identical Bosons on two sites, the number of particles
found on either of these sites can take on any integer be-
tween and including 0 and N. Hence, the dimension of the
N-particle Hilbert space is merely N + 1, easily accessi-
ble to numerical analysis even for quite substantial values
of N. Thus, replacing the c-number amplitudes c1, c2, and
their complex conjugates, by Bose operators by, by which
annihilate a particle at the respective site, and their ad-
joint creation operators, subject to the commutation rules

[bk, b]] = Ok (27)
the N-particle counterpart of the mean-field Hamilto-
nian (26) takes the form

12
Hyp = 5" (010} -+ b]b2 ) + e (b]b]baby + Bobabe)
+ hpsin(wt) (b{b1 - bgbg) . (28)

Adapting then the definitions (19) and introducing the
operators [5]

(b{bg + blb;)
f% (b{b2 - blb;)

J, = % (b{bl - b;bg) :

1
2
Jy =
(29)

one finds that these expressions obey the familiar SU(2)
commutation relations

[Jis Ji] = i€kimIm, (30)
that is, they represent the three components of an angular
momentum-type operator. (It is, of course, this fact which
first motivates one to consider the operators (29) and then,
backwards, their classical analogues (19); rather than the
other way round.) Calculating the Casimir invariant

N (N
J§+J§+J§=3<3+1), (31)
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one sees that this angular momentum is of magnitude N/2,
so that its 2(N/2) 4+ 1 = N + 1 states match precisely the
N + 1 basis states of the N-particle Hilbert space.

Expressed in terms of these angular momentum oper-
ators, the Hamiltonian (28) reads

Hyp = —hQJ, + 2hkJ? + 2husin(wt)J,

1
and the Heisenberg equations of motion become
P ol _9Fn(¥
Jo = =25 (e + Jdy) =2 sin(57) g,
. K a,
Jy =25 (oda + Jod:) + 2 % sm(ﬁr) Ty + .,
J, = —Jy. (33)

Comparing these equations for the N-particle system to
their mean-field counterparts (20), one sees that the mean-
field approximation formally consists (apart from writing
NKj, for Ji) merely in the substitution

(JyJ. + J.Jy) — N?K, K., (34)

1

2

and the analogous substitution in the second equa-

tion (33); but it is not obvious at all to which extent these

replacements of non-commuting operators by c-numbers

affect or even falsify the dynamics [5,18]. This matter will
be investigated further in the following two sections.

For juxtaposing the nonlinear mean-field dynamics to

the exact evolution of the quantum system, one has to

know the N-particle counterpart of a given mean-field

state (cl, ca=+/1-¢3 exp(igp)), where the amplitude ¢;
may be chosen real. This pair contains the information
that there are, on the average, Nc? atoms in the first
well, and that the relative phase between the condensate
in the first and in the second well is . In a fully quan-
tum mechanical setting, when one is in possession of the
information that each individual atom has the probabil-
ity ¢ = cos?(19/2) of staying in the first well, one still
has to deal with the coherent superposition of the pos-
sibilities that there actually is any number n; of parti-
cles between 0 and N in the first well, while each of the
ny = N — np remaining particles in the second well con-
tributes a relative phase ¢; here the assumption of deal-
ing with phase-coherent Bose-Einstein condensates enters.
Hence, writing the Fock states with nq atoms in the first
and ng atoms in the second well as |nq,ns), and recalling
the properties of the Binomial probability distribution, the
N-particle states corresponding to the mean-field states
(c1,c2) = (cos(¥/2), sin(¥/2) exp(ip) ) evidently are

N N 1/2 .
|9, ) = Z <n ) cos™ (9/2) sin"?(9/2) €% |n1, na).
TLl:O 1

(35)

These “atomic” coherent states had previously been stud-
ied in detail in reference [19] and, in particular, in ref-
erence [20], where also their relationship to the standard
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coherent states has been investigated; they have also been
considered by Milburn et al. [5] and Raghavan et al. [18]
in a discussion of non-driven condensate tunnelling. Inter-
estingly,

N
(0, pldz|0, @) = 5 sin 9 cos ¢
N
<79790|Jy|79a90> = 3 sin ) sin

N
<19a 50|JZ|197 90> = 3 COSI?? (36)
so that a coherent state (35) may conveniently be visual-
ized by the tip of a vector moving on a unit sphere.

3 The self-trapping transition

We will now investigate the validity of the mean-field ap-
proximation in the absence of the driving force, i.e., for
/2 =0 [5,18], so that the only relevant parameter is the
scaled interaction energy

Nk
02

To begin with, we find the stationary states of the non-
linear Schrodinger equation [21], that is, solutions of the
form

a (37)

c1,2(7) = 91 2 exp(—ivT) (38)

with real (dimensionless) frequency v. These states follow
from the nonlinear eigenvalue problem

v = *%1/12 + 2al Y1

v = — by + 20l P (39)
or
Wil = = 5ivs + 20l
Vhal? = — 545 + 2alil®. (40)

Since 11, 19 are determined only up to an overall phase
factor we may choose 7 as real, so that, by virtue of
equations (40), also ¥2 must be real. Subtracting these
two equations, and using 1% + 2 = 1, one arrives at

v (297 —1) =2a (297 - 1),

which leaves us with the following alternative:

(41)

(i) Either we have 212 — 1 = 0, giving “balanced” states
with equal population of both wells,

1
1/}1 - %
1
1y = iﬁ ' (42)
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The frequencies of these two solutions are

1
ve=a¥g, (43)
and the corresponding energies per particle, measured
in multiples of the single-particle tunnelling energy,
turn out to be

Ei/N « 1
- 44
he 2732 (44)
(ii) Or we have v = 2« in equation (41), in which case
one finds
dathr =~ (45)
12 = — 7~

by adding the two equations (40). This means that the
two amplitudes must have the opposite sign if «, and
hence k, is positive; according to equations (2) and (7),
this occurs when the scattering length ag. is positive,
so that the interaction among the atoms is repulsive.
On the other hand, for negative scattering length and
attractive interaction, as is the case for condensates
of "Li [22], both amplitudes must have the same sign.
Squaring equation (45) then gives

Ui (1—-¢f) = (46)

(4a)?’

leading immediately to

) : 1/2
sign(a) 1 2
o = — NG 1—4/1-— 12 ; (47)

a further solution is obtained by interchanging the in-
dices 1 and 2, thereby swapping the populations in
the two wells. Whereas the previous balanced solu-
tions (42) exist for any «, these latter solutions (47)
with “unbalanced” distribution of atoms over the wells
exist only for sufficiently strong interaction, |o| =
N|k|/£2 > 1/2; their energy is

E/N 1
h2 8a (48)
For a > 0, the solution (47) and its population-
swapped counterpart bifurcate at « = 1/2 from the “up-
per” solution (42) (meaning the solution with a rela-
tive phase of m between both amplitudes, which gives
the higher energy (44)), whereas for « < 0 the unbal-
anced states bifurcate at o = —1/2 from the solution
with zero relative phase, corresponding to the lower en-
ergy (44). Standard linear stability analysis [21] reveals
that the branch from which the unbalanced states bifur-
cate becomes unstable at the bifurcation point, whereas
all other solutions are stable; the bifurcation therefore is
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0.0 1.0 2.0

Nk/Q

Fig. 1. Mean-field energies ¢ = E/h{2 of the “balanced”
states (42) and of the “unbalanced” states of the type (47), for
repulsive interaction (positive ). As indicated by the dashed
line, the balanced state with the higher energy (44) becomes
linearly unstable when the unbalanced states bifurcate off,
whereas all other states are linearly stable.

2.0

1.0

€/ N

0.0
0.0 1.0

Nx/Q
Fig. 2. Exact energy eigenvalues e, = FE,/hf2 of the
N-particle Hamiltonian (28) with p/f2 = 0, for N = 100 Bose
particles. Observe the striking resemblance of this figure to the
mean-field energies displayed in Figure 1.

2.0

of the pitchfork type [23]. Figure 1 shows the energies (44)
and (48) for positive a; stable states are indicated by solid
and unstable states by dashed lines. The corresponding
diagram for negative « is obtained by rotating the figure
by 180 degrees around the origin. Thus, for repulsive in-
teraction the mean-field ground state always features the
same number of atoms in both wells, whereas for attractive
interaction it becomes energetically favourable to collect
more atoms in one of the wells when |a| > 1/2.

The bifurcation depicted in Figure 1 reflects the non-
linearity of the mean-field eigenvalue problem (40). Con-
sidering the fact that eigenvalues of the linear Schrodinger
operator describing the N-particle problem do not bifur-
cate, what is the meaning of this bifurcation for the ex-
act quantum dynamics? Figure 2 shows the exact energy
eigenvalues of the Hamiltonian (28) with p/2 = 0, for
N = 100. There is a fairly strong resemblance of this fig-
ure to the previous one; the energies of the highest and
lowest N-particle state closely follow those of the linearly
stable mean-field states. Yet, for graphically resolving all

The European Physical Journal B

2.0

1.0

€/N

A

0.0
0.0 1.0

Nx/Q

Fig. 3. Exact energy eigenvalues e, = FE,/hf2 of the
N-particle Hamiltonian (28) with p/2 = 0, for N = 20 Bose
particles. Note that the linearly unstable mean-field eigenvalue
in Figure 1, considered as a function of & = Nk/{2, does not
correspond to an individual eigenvalue, or pair of eigenvalues,
of the N-particle problem.

2.0

details of the spectrum even N = 100 appears too large;
the systematics become more clear in Figure 3, where N
has been reduced to 20: There are essentially two groups
of energy levels; those that still follow the low-a-pattern
even for a > 1, and those that “bend off”, following the
unbalanced mean-field states. These latter states become
pairwise degenerate (roughly) when they cross the dashed
line marked by the linearly unstable mean-field state in
Figure 1. In terms of the angular momentum form (32) of
the Hamiltonian, the first group of states is dominated
by the operator J,, that is, by well-to-well tunnelling,
whereas the second group is dominated by J2, that is,
by the interaction among the particles. The pairwise de-
generacy of these interaction-dominated states obviously
is related to spontaneous symmetry breaking: If there is an
unbalanced population, the majority of the atoms could
be sitting in either the right or the left well. It is thus in-
teresting to observe that when the interaction makes itself
felt while increasing «, it does not affect all quantum states
simultaneously but rather gradually, pair by pair. It also
seems worth mentioning that the linearly stable mean-field
states directly correspond to individual N-particle states,
or pairs of such states, namely the states with the highest
and lowest energy, but there is no such simple, continuous
correspondence for the linearly unstable states when « is
varied.

Resorting to the coherent states (35), the even bal-
anced mean-field state (42) corresponds to the coherent

state
N\1/2
|n17 77,2>,
ni

and the odd balanced state (42) to

|w/2,0) =

1 N
2N/2 Z (49)

n1=0

1 N
|m/2,m) = oN2 Z

n1=0

(Z)W(”N”W”hnz>~ (50)
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The unbalanced mean-field state (47) and its swapped
counterpart require more care, since the N-particle
Hamiltonian (28) respects parity when /2 = 0. Hence,
all its energy eigenfunctions must be of the balanced type,
describing modes with equal numbers of particles in both
wells. Therefore, if we construct the coherent N-particle
state (35) corresponding to the mean-field state (47), and
the mirror image

N A\/2 .
E ( ) cos™ (9/2) sin"?(¥/2) €' |na, mq)
ni

TL1=O

|9, )

(51)

for its counterpart, then these two coherent states do not
approximate individual N-particle energy eigenstates, in
contrast to the states (49) and (50). Instead, in order to
reconcile the occurrence of unbalanced mean-field states
with the necessity of perfectly balanced, exact N-particle

eigenstates, one has to form the balanced linear combina-
tions

2s) = 2 (10,9 10,97, 62)

where the constant C'is to ensure normalization (note that

|9, ¢) and |9, p) are not necessarily orthogonal, although
they tend to be so for large |a|), and

1/2
1 1
cos(¥/2) = 7 <1+ \/1— E)
al

This procedure of getting “delocalized” eigenstates from
“localized” partial solutions is analogous to the construc-
tion made in equation (3).

If « is positive and the interaction repulsive, as in the
previous figures, one thus expects the state (49) to pro-
vide a fair approximation to the exact N-particle ground
state |up); the highest N-particle state |uy) should be
well approximated by the state (50) as long as o < 1/2.
When a > 1/2, the highest pair of almost degenerate
N-particle states, |uy) and |uy_1), should almost coin-
cide with the pair (52). This expectation is confirmed in
Figure 4, which shows the squared projection of |r/2,0)
on |up) (inset), the squared projection of |7/2,7) on |un)
(dashed curve), and the sum of the squared projections of
the unbalanced coherent state |19, ¢) with parameters (53)
to |un) and |uny—_1). We avoid considering the individual
projections, since this requires to numerically resolve the
tiny difference between the almost degenerate energies of
|lun) and |uy—1). However, for comparatively small N,
such as N = 20 as in Figure 4, this resolution poses no
problem, and we have checked that for a > 1 the highest
eigenstate |uy) coincides almost exactly with the super-
position @, ), while |uy_1) is approximated to the same
level of accuracy by |?_). Although the particle num-
ber N is merely 20 in Figure 4, the expected crossover

mfora >0

. 53
Ofora<0 (53)
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o
A \ 1.0\
05 | oo .
Voo \
v 0.8
V0.0 1.0 2.0
0.0 |
0.0 1.0 2.0
Nk/Q

Fig. 4. Squared projection |(m/2,0|uo)|* of the coherent
state (49) to the exact N-particle ground state |ug) (inset),
and squared projection | {7 /2, 7|un)|* of the coherent state (50)
to the highest N-particle energy eigenstate |un) (main fig-
ure, dashed curve), together with the sum [(¥,plun)|® +
[(9, plun—1)|* of the squared projections of the coherent
state (35) with parameters (53) to the highest two N-particle
eigenstates. For Nx/{2 > 1 each summand contributes almost
exactly 0.5, indicating that the coherent state |¢, ) is an equal-
weight superposition of the almost degenerate pair |un) and
|un—1). The number of particles is N = 20.
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Fig. 5. As Figure 4, for N = 100. Note that at Nx/2 =
0.5 the drop of the dashed curve, representing the overlap
(m/2, lun)|?, is already quite rapid.

is already well developed: For oz < 1/2, the highest energy
eigenstate is almost exhausted by the single coherent state
emerging from the odd balanced mean-field state (42); for
a > 1/2, the highest pair of states is exhausted by the
pair (52) made up from linear combinations of two un-
balanced coherent states. When the particle number is
increased to N = 100, this crossover already becomes re-
markably sharp, as witnessed by Figure 5.

On the mean-field level, a dynamical consequence of
the emergence of unbalanced stationary states is a “self-
trapping transition” that affects the coherent population
oscillations between both wells [5,6,8]; an analogous effect
had been found by Kenkre and Campbell when studying
the motion of a polaron on a dimer [10]. Namely, if initially
all particles are trapped in one of the two wells, quan-
tum mean-field tunnelling leads to perfect, time-periodic
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exchange of population between both wells as long as
|a] < 1, whereas the atoms become self-trapped, so that
the exchange of population is imperfect, when |a| > 1.
More precisely, if one takes the population imbalance (21)
initially as p(0) = 1, one finds

en(T, |al) for |a| < 1
sech(r) for o] =1 ,
dn(ar,1/|al) for |a] > 1

p(r) = (54)

where cn(z,k) and dn(z,k) are Jacobian elliptic func-
tions [24,25]; this solution (54) is adapted from the
Kenkre-Campbell solution [10] to the present case, and
discussed in some detail, in Appendix A. Note that
cn(z, k) oscillates cosine-like between +1 and —1, whereas

dn(z, q) oscillates merely between +1 and ++/1 — ¢?; the
periods of oscillation are
4K f <1
B .
WK(1/|Q|) for |a| > 1

with K (k) denoting a complete elliptic integral of the first
kind. The imperfect dn-oscillations indicate self-trapping:
When p(0) = 0 and |a|] > 1, the population imbalance
never gets below p(T/2) = /1 — 1/|a|?. Observe also that
en(z,1) = dn(z,1) = sech(z), so that p(r) depends con-
tinuously on |«].

The question now is how accurate the mean-field ap-
proximation (54) describes the evolution of the actual
N-particle system. Figure 6 shows the exact dynamics for
a = 0.5 and N = 100: Initially, at 7 = 0, all particles were
concentrated in the first well,

[(r=0)=]9=0,p=0)=|n; = N,ng =0), (56)
the time-dependent Schrédinger equation for |¥(7)) has
been solved numerically, and the expectation values
(Jz,2)/N = (U(1)|Je,2|¥(7))/N have been plotted; note
that (J,)/N is the N-particle-analogue of the mean-field
imbalance p(7)/2. Unlike the perfect mean-field oscilla-
tion (54), the exact 100-particle oscillation (J,)/N shows a
rapid collapse towards an equilibrated distribution within
less than 10 periods, followed by a partial revival between
7~ 500 and 7 & 750. Such collapses and revivals are nec-
essary consequences of the discreteness of the N-particle
system’s energy spectrum [5,26,27], with the characteris-
tic time scales depending markedly on N: Figure 7 depicts
the dynamics for N = 1000, again with @ = 0.5. Now the
initial collapse takes longer, but there is no significant re-
vival up to 7 = 1000. It should be kept in mind that the
N-particle Hamiltonian contains no dissipation, so that
the apparent “damping” observed in Figure 7 still results
from perfectly coherent time evolution. Coming back to
the estimates made in Section 2, an interval A7 = 1000
corresponds to At ~ 45 s when 2 = 22 s~1, so that the
1000-particle oscillation decays within no more than 5 sec-
onds. In a laboratory experiment, of course, some real dis-
sipation would be present. If the characteristic time scale
for the loss of coherence were significantly longer than the
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Fig. 6. N-particle population imbalance (J.)/N (upper
curve), and expectation value (J;)/N, for N = 100 Bose par-
ticles, and Nk/f2 = 0.5. The initial state at 7 = 0 was given
by the Fock state (56), expressing confinement of all particles
to one well.

0.5
pd
~
A 0.0

%
—
\Y
-0.5 — :
0 500 1000
T

Fig. 7. As Figure 6, but with N = 1000 particles. The interac-
tion strength has been reduced such that, again, Nx/2 = 0.5.
Note that even up to 7 = 1000 there is no significant revival
following the initial collapse. This apparent “damping” of the
N-particle oscillation results from perfectly coherent dynamics.

time of a coherent collapse — say, about 10 seconds in the
present example — it might actually become feasible to ob-
serve this intrinsic “coherent damping” of the N-particle
oscillation, with dissipation merely destroying the long-
time revivals.

Although it misses collapses and revivals, the approx-
imation (54) works quite well for short times. Figure 8
compares the exact N-particle imbalance (J.)/N, again
for « = 0.5 and both N = 100 and N = 1000, with the
mean-field prediction p(7)/2 = cn(7, «)/2. Evidently, the
oscillation period does not depend on the particle num-
ber, and the mean-field picture captures this period very
accurately.

The mean-field approximation becomes valid even for
very long times when N is made very large, while a =
Nk/§2 is kept constant [5,18,28]. However, this limit is
hard to attain in practice, if one aims at exploring
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Fig. 8. Comparison of the exact N-particle imbalance (J.)/N,
for Nk/f2 = 0.5 and both N = 100 (heavy line, rapidly
damped) and N = 1000 (heavy line, slowly damped), with
the mean-field approximation (54) (thin line). Observe that
this approximation accurately captures the exact oscillation
period.
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Fig. 9. Exact N-particle imbalance (J.)/N for N = 1000 and
Nr/2 =0.95 (heavy line), compared to the mean-field approx-
imation (54) (thin line). The initial state for the 1000-particle
computation was the Fock state (56).

the interesting regime |a| &~ 1. Namely, combining equa-
tions (15) and (17) yields
d2
Xp <+2—€2> ;

which leaves comparatively little freedom: For establish-
ing a weak tunnelling link, the well-to-well separation 2d
should exceed the combined oscillator length 2¢ of the two
on-site orbitals, so that the exponential in equation (57)
is at least on the order of unity. Then /{2 is mainly fixed
by the ratio as./d of the scattering length to the half-
distance between the wells. With as. on the order of a
few nm, and d on the order of a few pum, one typically has
#/ {2 on the order of 1073,

Hence, it is of interest to explore what remains of the
mean-field self-trapping transition for double-well poten-
tials containing about 1000 particles; the previous Fig-
ures 4 and 5, indicating that the appearance of “unbal-
anced” stationary states indeed makes itself felt even in
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Fig. 10. As Figure 9, but with Nx/2 = 0.99.
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Fig. 11. As Figure 9, but with Nx/2 = 1.01. The previous
perfect cn-type mean-field oscillations have given way to the
imperfect dn-type oscillations. The inset shows that the valid-
ity of the mean-field approximation is restricted to the first
half-period.

such small systems, gives rise to some optimism. Fig-
ure 9 compares the 1000-particle imbalance (J,)/N for
a = 0.95, again computed with the Fock state (56) as ini-
tial state, to the mean-field result (54). Now the damping
is more rapid than previously for o = 0.5; the closeness to
the transition point reflects itself in the fact that the os-
cillation does no longer equilibrate exactly to zero. When
« is increased to 0.99 (Fig. 10), the exact dynamics devi-
ate from the mean-field oscillation after even shorter time,
and the long-time average of the exact imbalance increases
slightly; a tendency which is continued for @ = 1.01, barely
above the critical value (Fig. 11). Farther away from this
critical value, for @ = 1.05, the mean-field picture becomes
better again (Fig. 12); well above that value, for o = 1.50,
the mean-field approximation describes at least the first
few oscillations correctly (Fig. 13). Now the exact 1000-
particle oscillation levels off to the average of the imperfect
dn-oscillation,

(L.)/N = (1+v/T=1]]aP) /4.

To summarize, while there is no sharp self-trapping tran-
sition for double wells containing a few thousand particles,

(58)
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Fig. 12. As Figure 9, but with Nx/2 = 1.05.
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Fig. 13. As Figure 9, but with N/ = 1.50. Observe that the
exact N-particle oscillation accurately levels off to the average
of the mean-field dn-oscillation, as described by equation (58).

and while the mean-field oscillations persist only for a few
periods in the transition regime, the very essence of self-
trapping remains intact: For |«| > 1, the atoms tend to re-
main trapped in the initially populated well, such that the
averaged population imbalance is given by equation (58)
when |« is sufficiently large. Because a self-trapped, un-
balanced state involves odd or even linear combinations
of almost degenerate energy eigenstates, as shown in Fig-
ures 2 and 3, self-trapping cannot be sustained indefinitely
on the N-particle level, but well-to well tunnelling still oc-
curs on the long time scale determined by the energy dif-
ferences within the degenerate pairs. However, in typical
short-time experiments this slow tunnelling process would
go undetected.

4 The response to a periodic force

A convenient tool for visualizing, on the mean-field
level, the effect of the periodic force on the coupled
Bose-Einstein condensates is furnished by the nonrigid-
pendulum representation (23). Taking an arbitrary point
(p0,Pp0) in the p-p—plane as initial condition, solving the
equations of motion and recording the resulting points
(o(nT),p(nT)) once every period T = 27m(w/2)~! of the
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Fig. 14. Poincaré surface of section for the nonrigid pendu-
lum (23) with Nx/£2 = 0.5 in the absence of the force, for
1/ = 0. The elliptic fixed point (¢ = 0,p = 0) in the center
of the plot corresponds to the stationary mean-field state (42)
with the “plus”-sign. The other fixed point (¢ = m,p = 0), cor-
responding to the stationary state (42) with the “minus”-sign,
is on the verge of bifurcation, giving birth to the the unbal-
anced mean field states (47).

drive (i.e., for n = 0,1,2,3,...), then varying the initial
condition and repeating this procedure, one obtains a stro-
boscopic picture of the dynamics, the so-called Poincaré
map [23]. Figure 14 depicts a plot of such a Poincaré map
for Nk/£2 = 0.5, still for vanishing driving amplitude,
/2 = 0. This plot features two fixed points, one in the
center (¢ = 0,p = 0), one at the edge, (¢ = m,p = 0)
(note that the edges ¢ = —7 and ¢ = +m have to be
identified). Obviously, these fixed points correspond di-
rectly to the stationary mean-field states: the one in the
center to the state (42) with the “plus”-sign, the one at
the edge to the state (42) with the “minus”-sign; the fact
that these two stationary states are population-balanced
is immediately visible since they fall on the line p = 0.
While the “elliptic” fixed point in the center is linearly
stable, in accordance with the analysis in Section 3, the
fixed point at the edge is just on the verge of bifurcation,
giving birth to the unbalanced mean-field state (47) and
its population-swapped counterpart.

The picture changes drastically when the periodic
drive is turned on. Figure 15 shows a Poincaré plot
with Nk/2 = 0.5 as before, but now for u/f2 = 0.3
and w/2 = 1.0, so that the driving frequency precisely
matches the single-particle tunnelling frequency (6). Most
of the previous invariant curves have been destroyed and
replaced by a seemingly irregular pattern of points, in-
dicating that the driven mean-field dynamics are chaotic.
However, embedded in this chaotic sea there still are three
islands of (predominantly) regular motion, with a stable
fixed point in the center of each. As in the undriven case,
these fixed points have special significance. In terms of
the mean-field amplitudes considered in the system (12),
a fixed point of the Poincaré map corresponds to a solu-
tion ¢ (7) = (e1(7), c2(7)) which reproduces itself up to
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Fig. 15. Poincaré surface of section for the nonrigid pendu-
lum (23) with Nx/2 = 0.5 under the influence of a time-
periodic force with amplitude /2 = 0.3 and frequency w/§2 =
1.0, showing that the driven mean-field dynamics are chaotic.
The fixed point in the center of each of the three regular islands
corresponds to a balanced nonlinear Floquet state.

an overall phase factor after every period T of the force,

cip(T +T) = cip(7) . (59)
Writing, in analogy to the stationary states (38) in the
absence of the drive, that phase factor as exp(iygp) =
exp(—ivgT), the fixed-point solutions take the form
cip(T) = ugp(T) exp(—ivep7), (60)
where the functions ug,(7) defined by this equation inherit
the temporal periodicity of the driving force,
uip(r) = gy (7 + T). (61)
This representation (60) makes it clear that the fixed-
point solutions to the system (12) are nothing but gen-
eralizations of the Floquet states known from periodically
driven quantum systems to the present mean-field system
obeying a nonlinear Gross-Pitaevskii equation. Briefly,
the time-dependent Schrodinger equation ifid:|i(t)) =
H(t)|1(t)) for a system governed by a periodically time-
dependent Hamiltonian H(t) = H(t+T') admits solutions
of the form [12,13]

|thn (£)) = [un(t)) exp(—ient/h) (62)
with T-periodic Floquet functions
un(t)) = |un(t + 1)) (63)

and “quasienergies” &,. While the formal similarity
of these linear Floquet states to their nonlinear ana-
logues (60) is obvious, there still are a number of con-
ceptual differences. For instance, the Floquet index vg,
should not be regarded as a quasienergy, but rather as
a frequency, since, in contrast to the Schrodinger case,
the mean-field relation between energy and frequency
is nonlinear (¢f. Eq. (43) vs. Eq. (44), and the corre-
sponding relations for the unbalanced states). Moreover,
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1.0

Fig. 16. Poincaré surface of section for higher interaction
strength, Nx/§2 = 1.5, and vanishing force, p/2 = 0. Besides
the stable fixed point (¢ = 0,p = 0) and the unstable fixed
point (¢ = 7, p = 0), there are two further stable fixed points
in the lobes at the edges, corresponding to the unbalanced
mean-field state (47) and its population-swapped counterpart.

a periodically forced L-level system possesses precisely L
Schrodinger Floquet states, whereas the number of non-
linear Floquet states is a priori uncertain, since these
latter states are subject to bifurcations. We conclude
from these deliberations that (i) Floquet-type solutions
to the Gross-Pitaevskii equation (12) describing periodi-
cally forced, coupled Bose-Einstein condensates exist, and
that (ii) these “nonlinear” Floquet states take over the
role which had been played in the absence of the force by
the stationary mean-field states.

The nonlinear Floquet states now enable us to discuss
the periodically driven system in close analogy to the un-
driven one. The Floquet states corresponding to the fixed
points in the centers of the regular islands in Figure 15
are all of the balanced type, since they again fall on the
line p = 0. (Note that this statement is made possible
by the circumstance that we have chosen the moments
of stroboscopic sampling as 7, = n2m(w/2)~!, when
the instantaneous force vanishes.) However, for higher in-
teraction strength one also expects unbalanced Floquet
states, generalizing the previous unbalanced stationary
states of the type (47). Figure 16 shows a Poincaré plot
for Nk/§2 = 1.5, well above the bifurcation, and p/f2 = 0.
There is the familiar stable fixed point in the center, the
fixed point at (¢ = m,p = 0) now has evidently become
unstable, and the lobes in the edges of the plot surround
the fixed points that go with the unbalanced state (47)
and its swapped counterpart. When the drive is turned
on to p/2 = 0.3 with w/2 = 1.0, while keeping Nx/{?2
at the value 1.5, one obtains Figure 17: The central fixed
point still is surrounded by a large regular island; there
also is a further tiny, barely visible island around (/7 =
—0.874,p = 0), and there are the expected regular islands
at the edges, having emerged from the lobes in the preced-
ing Figure 16. In order to establish the distinction between
“balanced” and “unbalanced” nonlinear Floquet states,
Figure 18 depicts the temporal evolution of the Floquet
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Fig. 17. Poincare surface of section for Nxk/2 = 1.5, p/02 =
0.3, and w/2 = 1.0. The elliptic fixed points located in the
islands at the corners correspond to unbalanced mean-field
Floquet states. Note that there also is a tiny regular island
around (¢/m = —0.874, p = 0).
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Fig. 18. Mean-field angular momentum components K, (short
dashes), K, (long dashes), and K. (full curve), as defined by
equation (19), for the balanced nonlinear Floquet state asso-
ciated with the fixed point at (¢/m = —0.874, p = 0) in Fig-
ure 17, for an interval of two periods of the driving force.

state associated with the fixed point (p/m = —0.874,
p = 0) in terms of the components K,, K, and K, of
the angular momentum defined by equation (19), while
Figure 19 shows the analogous plot for a Floquet state as-
sociated with one of the islands in the edges of Figure 17.
The former state is manifestly balanced, with the popula-
tion difference K, oscillating symmetrically around zero,
whereas the latter is strongly unbalanced, maintaining a
large population surplus in the first well.

As detailed in Section 3, the exact N-particle energy
eigenstates for the undriven case have definite parity and
therefore are all of the balanced type. However, they come
in almost degenerate pairs, so that forming odd and even
superpositions of the members of such a pair gives unbal-
anced N-particle states which initially are concentrated
in one of the wells, and remain so for rather long times,
since the energy difference between the two eigenstates
is almost negligible. The driven system no longer respects
parity, but there is a substitute, since the Hamiltonian (28)
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Fig. 19. As Figure 18, but now for the unbalanced mean-
field Floquet state associated with the fixed point at (p/7 =
—0.938,p = 0.984) in Figure 17.
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Fig. 20. N-particle expectation values of the angular momen-
tum components J, (short dashes), J, (long dashes), and J.
(full line), as defined by equation (29), for an exact N-particle
Floquet state with Nk/2 = 1.5, p/22 = 0.3, and w/2 = 1.0.
This Floquet state has a partner state possessing almost the
same quasienergy as itself. The number of particles is N = 100.

remains invariant if parity inversion (corresponding to in-
terchanging the indices 1 and 2) is followed by a shift
in time by half a driving period. Accordingly, the exact
N-particle Floquet states, which can be computed nu-
merically by standard techniques [12], are eigenstates of
this generalized parity operation. We find that, analo-
gous to the undriven case, (i) a fraction of these Floquet
states comes in pairs with almost degenerate quasienergies
if N|k|/2 is sufficiently large, and that, while the indi-
vidual Floquet states are population-balanced if averaged
over time, (ii) one obtains unbalanced, almost T-periodic
N-particle states by forming superpositions of these al-
most degenerate, balanced quasienergy eigenstates. An ex-
ample for the evolution of an exact N-particle Floquet
state, now represented by the expectation values of the
components J, Jy, and J, of the quantum angular mo-
mentum (29), is displayed in Figure 20. The parameters
again are Nk/2 = 1,5, p/2 = 0.3, and w/2 = 1.0;
the particle number is N = 100. This state is one of the
“paired” Floquet states, i.e., it possesses a partner state
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Fig. 21. As Figure 20, but now for a superposition of the
Floquet state considered there with its partner state. This su-
perposition exhibits a strong, long-lasting population imbal-
ance. From the difference of the two quasienergies, we estimate
that the population will have tunnelled to the other well only
after more than 8 x 10° driving periods.

with a quasienergy almost identical to its own. Forming
a superposition of these two states, one finds the strongly
unbalanced N-particle state depicted in Figure 21. From
the small difference between the two quasienergies of this
particular pair, we estimate that the population imbal-
ance will be inverted by collective tunnelling to the other
well only after more than 8 x 10° periods of the driving
force. With w = 22 s™!, as corresponding to the estimate
in Section 2, this implies a tunnelling time of close to a
month.

The above analogy between the undriven and the
driven dynamics now leads one to expect that there also
should be something akin to the self-trapping transition
in the presence of the periodic drive: If initially all con-
densed Bose particles are stored in one of the wells, they
should visit both wells equally as long as the scaled in-
teraction strength N|x|/{2 stays below a certain critical
value (which, again, will not be defined sharply on the
N-particle level, but rather should be regarded as a value
characterizing the center of a transition regime; cf. the
gradual transition displayed in Figs. 9 to 12), but maintain
a long-lasting population imbalance when N|k|/f2 is en-
hanced. Most importantly, that critical value of the inter-
action strength, now reflecting the presence of unbalanced
(on the mean-field level) or paired (on the N-particle level)
Floquet states, should depend on the parameters of the
force, as do the Floquet states themselves, and could thus
be quite different from the critical value N|x|/2 = 1.0
which marks the transition in the absence of the drive.
In other words, it should be possible to coherently con-
trol the onset of self-trapping by the external force. This
expectation is fully borne out by the following two plots:
Figure 22 shows the evolution of the population imbal-
ance, after initially N = 1000 Bosons had been trapped in
the first well, for Nk/2 = 1.4, and p/2 = 0.3, w/2 = 1.0.
Although the scaled interaction strength is significantly
higher here than N|k|/f2 = 1.0, this figure still is remi-
niscent, of Figure 9, signalling untrapped evolution: After

gy

Fig. 22. Exact N-particle imbalance (J.)/N, for N = 1000
and Nk/f2 = 1.4, in the presence of a periodic force with
parameters p/(2 = 0.3 and w/{2 = 1.0 (heavy line); all particles
were initially trapped in the first well. Although the scaled
interaction strength is much higher than the value Nx/2 = 1.0
marking the onset of self-trapping in the absence of the force,
the time-averaged imbalance soon tends to zero. The thin line
shows the mean-field prediction for the same set of parameters.
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Fig. 23. As Figure 22, but now for Nx/2 = 1.6. The param-
eters of the periodic drive are the same as before. The inset
shows that the exact N-particle dynamics (heavy line) follows
the mean-field prediction (thin line) only for a rather short
time interval.

an initial transient, the N-particle population imbalance
becomes almost zero on the average; naturally, the instan-
taneous imbalance has to follow the driving force to some
extent and therefore does not approach a constant value.
Again in close analogy to Figure 9, the mean-field pre-
diction for the same situation shows (chaotic) oscillations
covering (almost) the entire range between +0.5 and —0.5.
This changes when Nx/(2 is increased to 1.6: As displayed
in Figure 23, which should be contrasted to the previous
Figure 12, the population now actually remains trapped
in the initially occupied well, both on the mean-field and
on the N-particle level, although the mean-field picture
differs in detail strongly from the exact NN-particle evo-
lution already for 7 > 1. Of course, on the N-particle
level, on a long time scale determined by the difference be-
tween the quasienergies of the paired N-particle Floquet
states, self-trapping will once more be destroyed by
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tunnelling and the N Bosons will actually fill the other
well; however, under typical conditions that time scale is
way too long to be of experimental significance.

It should be noted that the force acting here on
the Bose Josephson junction is not strong, the quantum
hw just equalling the single-particle tunnelling splitting,
and the energy hu associated with the driving amplitude
amounting to merely 30% of that quantum. Yet, the effect
of even that weak force is substantial, shifting the onset
of self-trapping from Nx/2 = 1.0 in the absence of the
drive to about 1.5, that is, by roughly 50% upward. We
conclude that already a weak periodic force offers an ef-
ficient means of predetermining that value of the scaled
interaction strength Nk /{2 where self-trapping is desired
to occur. Besides the existence of Floquet-type solutions
to the Gross-Pitaevskii equation, the parallels between the
mean-field picture and the full N-particle evolution, and
the far-reaching analogy between the undriven and the
driven dynamics, this sensitivity of the mechanism for co-
herently controlling the self-trapping transition to the pa-
rameters of the drive is one of the main results of this
work.

5 Conclusions

In the absence of the driving force, the existence of unbal-
anced stationary mean-field states of the type (47) — that
is, of solutions to the nonlinear Schrodinger equation (40)
which imply a perpetual asymmetric distribution of the
condensed atoms over both wells — brings about the self-
trapping transition described by equation (54): Confining
initially the entire condensate to one well, complete, pe-
riodic tunnelling to the other well and back is possible
only as long as the absolute value of the scaled interac-
tion strength @ = Nk/f2 is lower than unity [5,6,8,10].
This mean-field result applies to the limit of large par-
ticle number (N — oo) and weak interaction (k — 0),
taken such that o« remains constant [28]. However, the
estimate (57) indicates that under typical laboratory con-
ditions the interesting regime || ~ 1 will be reached with
comparatively small condensates containing merely on the
order of 10? atoms. The exact N-particle dynamics then
exhibit collapses and revivals, thus differing strongly from
the mean-field picture. Yet, in essence self-trapping still
persists, albeit not for infinite times. This persistence is
made possible by the gradual appearance of pairs of almost
degenerate energy eigenstates which, although strictly bal-
anced themselves, are made up from unbalanced coherent
states according to the pattern (52).

When the double well is modulated periodically in
time, with period T', the mean-field dynamics undergo a
profound change and become chaotic. Nonetheless, there
remain strong parallels to the undriven case. The role
of the stationary mean-field states is taken over by the
Floquet states (60), which reproduce themselves (apart
from an overall phase factor) after every period of the
drive, and which can again be classified as “unbalanced”
or “balanced”, depending on whether or not they entail
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permanent asymmetric atom distribution. As in the un-
driven case, the unbalanced states lead to a mean-field
self-trapping transition; this transition survives on the
N-particle level, in somewhat smoothed form, down to
fairly small N. The survival is mediated by pairs of
balanced N-particle Floquet states from which almost
T-periodic, unbalanced wave functions can be built; the
tiny difference between the quasienergies of the members
of such a pair sets the time scale for the ultimate loss of
self-trapping due to collective tunnelling.

The existence of Floquet-type solutions for the non-
linear Schrodinger equation (12) could be ascertained by
linking these states to the fixed points of a Poincaré sec-
tion in the plane of relative phase ¢ and population imbal-
ance p, as in Figures 15 and 17. Without possessing a for-
mal proof, we surmise that such nonlinear Floquet states
exist also for other set-ups with forced Bose-Einstein con-
densates; if so, Floquet states should be of outstanding
value for analyzing a whole wealth of novel effects. For
instance, harmonic generation and nonlinear coupling in
the dynamics of strongly driven Bose-Einstein condensates
have already been observed [29]; since the Floquet states
incorporate the periodic drive in a non-perturbative man-
ner, they should be the tools for understanding such phe-
nomena outside the regime of linear response.

The point of view adopted in Section 4 may be char-
acterized as an active one: In the absence of the driving
force the self-trapping transition occurs for |a] = 1, in
the presence of that force the onset of self-trapping is
shifted to different values of « by suitably adjusting its
strength and frequency; we have shown that even weak
forces can effectuate substantial shifts. Measuring such
shifts could be exploited for determining the scattering
length ag. (if N is known beforehand), or the precise num-
ber of particles (if asc is known). One might, however, also
maintain that it is not the transition which is shifted to
different « as a result of the force, but rather that the
effective value of « is changed, implying that the peri-
odic force renormalizes the interaction strength. This al-
ternative, passive viewpoint is suggested by Figure 24,
which shows the quasienergies of the exact N-particle
Floquet states as functions of the driving amplitude u/(2,
for N =100, Nx/2 = 0.7, and the rather high frequency
w/§2 = 200. According to the estimates in Section 2, such
a high frequency certainly falls outside the regime of va-
lidity of the two-mode approximation, but it allows us to
avoid a complication brought about by the Brillouin zone-
structure of the quasienergy spectrum: As is evident from
equations (62) and (63), the separation of a Floquet state
|1, (1)) into a T-periodic function |u,(t)) and a phase fac-
tor exp(—ient/h) is determined only up to a phase factor
exp(—iwt), with w = 27 /T, so that the quasienergies are
defined only up to an integer multiple of fAw. Therefore,
the quasienergy spectrum is arranged in zones of width Aw,
each zone containing one representative of the quasienergy
of each state. With w/{2 = 200 in Figure 24, the width of
the Brillouin zone there exceeds the difference of the high-
est and the lowest unperturbed N-particle energy eigen-
value, so that folding the levels into the fundamental zone
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e
Fig. 24. Exact quasienergies &, (in multiples of hw) for
N = 100, Nk/f2 = 0.7, and high frequency w/f2 = 200.0,
as functions of the driving amplitude p/f2. The unpaired
quasienergies vary about proportional to the ordinary Bessel
function Jo(2p/w), leading to the focusing of these eigenvalues
at u/82 ~ 240, when the argument 2u/w equals the first zero
of Jo. The number of paired eigenvalues emerging above the
Jo-pattern depends strongly on p/ {2, being largest at the point
of focus.

400

does not change their relative position. (Had we chosen the
realistic frequency w/f2 = 1.0 instead, as in the case study
in Sect. 4, projecting the levels into a single zone would
have resulted in a multitude of near-degeneracies — avoided
crossings — which reflect the chaotic mean-field dynamics,
but would only unnecessarily complicate matters here.)
For 11/ 2 = 0, at the left margin, Figure 24 leads us back to
Figure 2 with Nx/{2 = 0.7: Most of the eigenvalues are un-
paired; only at the high end of the spectrum a few paired
quasienergies emerge, belonging to interaction-dominated
states. When /{2 is increased, the unpaired eigenvalues
in Figure 24 appear to get focused, such that the distance
between the highest and lowest unpaired quasienergy de-
creases proportional to Jy(2u/w), where Jo(z) denotes the
zero-order Bessel function; when u/2 =~ 240, so that the
argument 2u/w reaches the first zero jo1 ~ 2.405 of Jy,
the unpaired quasienergies collapse to a single value. This
Jo-pattern is well known in the theory of periodically
forced quantum systems; it always occurs when a chain
of entities with nearest-neighbour coupling is modulated
by a time-periodic dipole-type force. Among the older
examples are the Jy-proportional modification of atomic
g-factors for atoms in oscillating magnetic fields [30,31],
where the nearest neighbours are adjacent atomic angular
momentum substates, or the Jp-proportional band nar-
rowing for semiconductor superlattices in far-infrared laser
fields [31], where the nearest neighbours are adjacent su-
perlattice sites; traces of this band narrowing have re-
cently been detected in experiments with cold atoms in
periodically forced optical lattices [32]. The conspicuous
Jo-pattern in Figure 24 constitutes another example; here
the nearest neighbours are adjacent states in two-site Fock
space spanned by the number states |n1,n2) (¢f. Eq. (35)).
Thus, the appearance of this Jy-pattern obeyed by the un-
paired states was to be expected on general grounds. What
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Fig. 25. As Figure 24, but now for N = 20. The value of Nx/{2
again is 0.7, while the driving frequency has been reduced by
the same factor as the particle number to w/f2 = 40.0. Pairing
and unpairing of quasienergies in the vicinity of the focus point
at pu/2 =~ 48, where 2u/w equals the first zero of the Bessel
function Jo, are clearly visible here.

could not be expected, though, and leads to the passive
viewpoint we are aiming at, is the emergence of more and
more paired quasienengies on top of the focusing unpaired
eigenvalues when 24 /w approaches jo 1 from below, and
the re-transformation of paired states into unpaired ones
when the amplitude is increased beyond the focus point.
This gradual pairing and unpairing of quasienergies for
scaled driving amplitudes 2u/w in the vicinity of jo1 is
particularly obvious in Figure 25, where the number of
particles has been reduced to N = 20, and the frequency
has been adjusted accordingly. Comparing the N-particle
quasienergies displayed in these two Figures 24 and 25
to the energy eigenvalues shown in Figures 2 and 3, we
conclude that varying the driving amplitude has a sim-
ilar effect as varying the scaled interaction strength, in-
sofar as both parameters effectively control the ratio of
the number of interaction-dominated, paired to that of
unpaired states; increasing p/f2 in Figure 24 beyond the
focus point is tantamount to first increasing and then de-
creasing Nk/{2 in Figure 2. This is what ultimately pro-
vides the mechanism for coherently controlling the self-
trapping transition, and this is the basis of our passive
interpretation: Modulating the double-well amounts to
renormalizing the strength of the interaction among the
condensed atoms. Whether this renormalization is a spe-
cific feature of Bose-Einstein condensates in periodically
modulated double-well potentials, or whether is also oc-
curs under different conditions, is an open question.
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Appendix A: Evolution of population
imbalance within the mean-field
approximation

A convenient starting point for deriving the mean-field
dynamics of the population imbalance p(7) for pu/2 = 0
[8,10] is the nonrigid-pendulum Hamiltonian (24),

Hyp = ap® — /1 — p2 cos(p), (A1)
together with the equation of motion
p=—+/1—p?sin(p). (A.2)

We fix Hyp =1, so that, by construction, the constant of
motion 7 denotes the energy per particle in multiples of
the tunnelling splitting,

_E/N

A3
) (A.3)
A brief calculation furnishes the bounds on 7,
—1<n<+41 for |of<1/2
—4la| <dan <4a® +1  for  |a| >1/2; (A4)

recall that positive a correspond to repulsive and neg-
ative a to attractive interactions among the condensed
atoms. Squaring and adding equations (A.1) and (A.2)
then yields

. 2
P+ (ap® —n)" =1-p? (A.5)
or
. 1/2
p==xa [ —p)* —p?)]'"?, (A.6)
where
1
2 _ - _ 2 _
Pi =55 [20477 1+ /42 + 1 4047)}. (A7)

Using the inequalities (A.4), one easily shows that in any
case both p? and pi are real numbers, and that p%r is
always non-negative. In contrast, p> changes its sign when
|n] = 1 (more precisely, for & > 0 the change of sign occurs
when n = 1; for & < 0 when n = —1). This necessitates
distinguishing two cases:

(i) When || < 1, one has p?2 < 0. Casting then equa-
tion (A.6) into the form

o ) ()

A8)

where

k? =

N =

2am — 1
[1+ an

m} o (A9)

The European Physical Journal B

and observing that k% < 1, one can utilize the integral
representation for the inverse of the Jacobian elliptic
function cn, namely [24]

! dt
en Yy, k) = / - (A.10
v.%) v V(1= 2) (k22 +1 - k?) (A.10)
This leads immediately to
p(r) = pren(Trar +6.k). (A.11)

where the phase angle § is determined by the initial

condition,
f=Fen ! <@ ,k:) .
P+

(A.12)

The function cn(z, k) oscillates in a cosine-like manner
between +1 and —1, with period 4 K (k), where K (k)
denotes a complete elliptic integral of the first kind
[24,25]. Therefore, for |n| < 1 one encounters perfect,
periodic exchange of population between both wells,
with period

_AkK(k)

T
p+lal

(A.13)

(i) When |n| > 1, one has p?> > 0. Accordingly, rewriting
equation (A.6) as

(-GN

one is led to the representation of the inverse of the
elliptic function dn [24],

p=tap]

dn

1 ! dt
(y,Q)/y\/(th)(t2+q21), (A.15)

where the modulus appearing here is just the inverse
of the modulus (A.9) met in the previous case,

2
1
2o1-E o2 Al

q pQ+ k2 ( 6)

Therefore,
p(1) = pydn(prar + 5,1/k) (A.17)

with
_1(p(0) 1

8 =Fdn 1(—,—). A18
p+ k (A.18)

In contrast to cn(z,k), the function dn(z,q) oscillates
merely between +1 and +4/1 — ¢2, with period 2 K(q).
Thus, for |n| > 1 the oscillations of the population be-
tween the two wells have the period

_2K(1/k)

T
p+laf

(A.19)
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but these oscillations are imperfect; the atoms tend to re-
main trapped in the well containing the majority of them
at 7 =0.

Since the value of n is determined by the initial con-
dition (po, o), so is the critical value of the coupling
strength @ where the cn-type solutions (A.11) change into
the trapped dn-solutions (A.17) [8]:

_ £14 /1 — p§cos(eo)
- > 7
Do

Q¢

(A.20)

implying a. = £1 if p3 = 1. Since, moreover, cn(z,1) =
dn(z,1) = sech(z), this transition occurs in a continuous
manner.

The above expressions for p(r) become particularly
simple when initially all atoms are confined to one of
the wells. Choosing pg = 1, the Hamiltonian (A.1) yields
17 = @, so that equations (A.7) and (A.9) give p% =1 and
k? = o2, respectively. Using this, one immediately finds
the results stated in equations (54) and (55).
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